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A b s t r a c t  

The relations of caterpillar trees (which are also known as Gutman trees and 
benzenoid trees) to other mathematical objects such as polyhex graphs, Clar graphs, 
king polyominos, rook boards and Young diagrams are discussed. Potential uses of 
such trees in data reduction, computational graph theory, and in the ordering of 
graphs are considered. Combinatorial and physical properties of benzenoid hydro- 
carbons can be studied via related caterpillars. It thus becomes possible to study 
the properties of large graphs such as benzenoid (i.e. polyhex) graphs in terms of 
much smaller tree graphs. Generation of the cyclic structures of wreath and 
generalized wreath product groups through the use of caterpillar trees is illustrated. 

1. H i s t o r i c a l  i n t r o d u c t i o n  

The simplest way of  defining a caterpillar tree, Pn (m 1, mE . . . . .  mn), is through 
the concept  of  the derivative of  the graph [1] .  Thus, when all the end points o f  a 
graph G are deleted, another  graph G'  results, called the derivative of  G. A caterpillar 
tree is defined to be a tree graph, the derivative of  which is a path. The name cater- 
pillar was suggested by  A. Hobbs [2] .  Thus, a caterpillar tree Pn(ml,  m 2 . . . . .  rnn) 
may be constructed by the addition of  m 1 monovalent vertices to the first vertex u 1 
of  path Pn, m2 monovalent  vertices to v 2 of  Pn, and so on. An example ofaca te rp i l la r  
tree and another  o f  a noncaterpillar together with other  graphs are shown in fig. 1. It 
seems that Harary and Schwenk were among the first to s tudy these trees in the 

mathematical  literature [ 1 ,3 ,4 ] .  
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P4 (5,0,4.2) 
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.A (I:)4 (3,0,4,2)) B (P4 (3,0,4,2))  

Fig. 1. A caterpillar tree P4(3,0,4,2), the corresponding Clar 
graph A(P4 (3,0,4,2)) and the corresponding benzenoid hydro- 
carbon B(Po(3,0,4,2)). A noncaterpillar tree is also shown. 

In chemistry, the use of these trees resulted from studying the topological 
properties of benzenoid hydrocarbons, namely resonance relations among individual 
hexagons of a benzenoid system [5]. Two hexagons in a benzenoid hydrocarbon are 
called resonant if an (aromatic) sextet (i.e. a set of three circularly conjugated double 
bonds) can be drawn in both of them such that the rest of the carbon atoms are 
spanned either by a double bond or by a sextet of electrons. Gutman [5] represented 
such resonance relations among hexagons of a benzenoid system by the edges of a 
caterpillar tree: two edges in a caterpillar tree are incident if and only if the corre- 
sponding hexagons in the benzenoid system are nonresonant. Thus, the tree given by 
P4 (3 ,0 ,4 ,2 )  corresponds to the benzenoid hydrocarbon B(P 4 (3 ,0 ,4 ,2) )  drawn in 
fig. 1. There is a one-to-one correspondence between the labeling of the edges of the 
caterpillar and those of  the hexagons of the benzenoid system. Explicitly, these terms 
were considered in chemistry (synonymously under the name "Gutman trees") in 
three recent papers by this author [ 6 - 8 ] .  

It is amazing that nearly all graphs that played an important role in what is 
now called "chemical graph theory" may be related to caterpillar trees. For this 
reason, such objects are of great importance for understanding and simplifying com- 
binatorial properties of  much more complicated graphs. Three main areas involve the 
use of these trees, viz. computational methods, ordering [9] and data reduction [10]. 
It is convenient to now give some important definitions for the development of this 
treatment. 
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2. Definition of important terms 

2.1. GRAPHS, LATTICES AND DIAGRAMS 

A caterpillar tree might be associated with the following objects: 

Polyhex graph B [ 11 ] 

This term was first introduced by Hosoya et al. [ 11 ] to mean a graph composed 
only of  hexagons that have an even number 2~ of points and that can be spanned 
by disjoint lines. The polyhex B below is one such type, while B' is not included in 

13 g '  

2.1.1. 

this definition. Obviously, the number of ways in which B can be spanned by the 2~ 
disjoint lines is well known in organic chemistry as the number of Kekuld structures 
[12] and is described in mathematics as the number of perfect matchings [13], a 
synonym for a famous problem in dimer statistics [14]. 

A molecular network which is entirely composed of hexagons is called 
benzenoid. If no three hexagons have a common atom, the system is called cata- 
condensed. If every hexagon of a catacondensed system has at most two neighboring 
hexagons, it is said to be nonbranched. If there is at least one hexagon in a cata- 
condensed hydrocarbon that is surrounded by three other hexagons, it is said to be 
branched. If in a polyhex graph at least one vertex is common to three hexagons, it 
is called pericondensed. 

2.1.2 Clar graphs A [15,16] 

Gutman [15] seems to have been the first to introduce this tern1 in chemistry; 
the concept was later developed by Gutman and this author [16]. For nonbranched 
benzenoids, a Clar graph is simply the line graph [17] of a caterpillar tree. In fact, it 
can be seen that every caterpillar is associated with a Clar graph (cf. fig. 1). 

For branched benzenoid hydrocarbons, however, no caterpillar tree is defined, 
although a Clar graph can be defined [15] in the following way. Let h 1, h 2 . . . . .  h n 
be the hexagons of the branched system. Then the vertices of  its Clar graph are 
vl ,  v2, . . . ,v n such that v i is connected to v i only if h i and h i are nonresonant. 
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R e l a t i o n  b e t w e e n  c a t e r p i l l a r  t r e e s ,  C l a r  a n d  p o l y h e x  g r a p h s  

At this point, it is important to digress from the relation between the three 
types of graphs defined above. We start by considering tile polyhex graph again. First 
we observe that two hexagons in a polyhex may or may not be resonant. An illustra- 
tion is considered below: 

Thus, hexagons 3 and 5 on tile left-hand side are nonresonant ,  while 1 and 4 on the 
right-hand side are. 

Gutman demonstrated [5] the following fact: Every nonbranched (cata- 
condensed) polyhex graph B which contains n hexagons is associated with a caterpillar 
tree T containing 17 + 1 vertices such that:two (or more) incMent  edges in T correspond 
to two (or more) nonresonan t  hexagons in B and vice versa, i.e. two (or more) non- 
inc ident  edges in T correspond to two (or more) resonant  hexagons in B. For example, 
consider B ( P  4 (3,0,4,2))  of fig. 1 and let ]li refer to the ith hexagon. One observes that 
linearly fused rings cannot be resonant. For example,none of the hexagons in each of the 
following sets can be resonant:  {h I , h 2, h a, t14}; {h4, hs} ; {hs, h6, h7, h8, ]19, hlo}; 
{hlo, h l l ,  h12}. Similarly, we say: all the edges in T in each of the following sets are 
adjacent:  {e 1 , e z , e3, e4} ; {e4, es} ; {es,  e6, e 7, e 8, e9, em};{elo, ell ,  e12 }. This one-to- 
one correspondence extends to the vertices of the Clar graph: All the vertices in each 
of the following sets are adjacent  [refer to A (P4 (3,0, 4, 2))] : {v I , v 2 , va, v4}; { v 4 , v s }; 
{05' 136' /')7, /38' /39' /310 };{/310, /311, /312 }* These fundamental relations have important 
implications in understanding the combinatorial structures of benzenoid hydrocarbons, 
as we shall see later. Because of this relation to benzenoid systems, caterpillar trees 
will also be called b e n z e n o i d  trees. 

2.1.3.  K ing  p o l y o m i n o  graphs P [ 18] 

Consider a rectangular lattice composed of cells arranged in a certain number 
of rows and columns. Such graphs are called polyominos or square animals. Two cells 
in a polyomino are defined [18] to be adjacent if they share at least one vertex. The 
maximum number of adjacent cells is therefore four. This corresponds to four non- 
resonant  hexagons annellated in a linear fashion. Because of this, king polyominos 
can be made to correspond to a polyhex graph containing linear seganents which are 
no  m o r e  than four hexagons long. An an illustration, we consider the following set of  
graphs whose caterpillar tree is P4 (2,0, 2, 1): 
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1 5 

o 

6 

% 
Therefore, for every subset of adjacent cells there is a corresponding subset of  non- 
resonant hexagons, incident edges and adjacent vertices. 

2.1.4. Rook boards Pr [19] 

A rook board is a subset of cells of a j x ]  chessboard. Godsil and Gutman 
demonstrated [19] that every bipartite [20] graph G is associated with a rook board 
such that a cell cq (which is located in the ith row and j th  column of the board) exists 
only if vertices i and j are connected in G. We illustrate how rook boards which 
correspond to bipartite caterpillar trees are constructed in the following chart: 

1 / 2 ~ 2 3 
o o ~ ~( 

2 4 7 

T 4 ( 2 , 1 , 0 , 1 )  

1' 3' 4 
o o :g 

;,' 1 s 

I' 2'514 l 

1 ! ± _ . 2 _ ~  

7 

4 6 s 
Pr (1"4(2,1,0 ,1) )  

1' 2' 3 ~ 4' 
1:1 3 2 
2 4 
5 5 6 
4 

11 2' 3' 4' 
1' 2 '2  4 1 i 2 1 s  

° ~ 7  2 4- 
" ~ " ~  3 5 6  

o 

1 3' 21' 4 _7" 

In the above chart, three different labelings of the bipartite caterpillar generated 
three different rook boards. These are shown by the heavily outlines squares. In a 
rook board, two cells are adjacent if they share the same row and column. For ex- 
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ample, in the top board the cell labeled 3 is adjacent to 1,2,4,  5, while cells in 4 and 
7 are not adjacent. The three rook boards preserve the combinatorial counts in the 
caterpillar form wh_ich they were generated. Thus, for example, there are six triplets 
of ~orradjacent edges in that tree, viz. {(146), (147), (157), (257), (247), (246)}. The 
same subsets of cells in all three boards are nonadjacent. Similarly, one can easily 
demonstrate that there are 13 sets of nonadjacent edges, each of cardinality 2 in the 
tree, which correspond to 13 such sets of nonadjacent cells in any of the above boards. 
Such combinatorial counts of nonadjacent structures represent the coefficients of 
counting polynomials, which will be considered later. Identical combinatorial counts 
exist in the associated polyhex graph, Clar graph and king polyomino graph, all of 
which are shown below: 

@ ~ ~  2 ~  o o 
1 3 5 6 7 

B(T 4 (2,1,0,1) ) A (T4 (2,1,0,1)) 

E s16171 
P (T4 (2,1,O,1) ) 

There are one-to-one correspondences between the labelings of the edges of 
T 4 (2, 1,0, 1), the hexagons of B, the vertices of A and the cells of Pr. Thus, a know- 
ledge of nonadjacent edges in T yields details of nonadjacent structures in other 
graphs, namely, polyhex graphs, Clar graphs, king and rook polyominos. 

2.2. POLYNOMIALS AND NONADJACENT STRUCTURES 

All polynomials of caterpillar trees and related graphs and lattices are com- 
binatorial descriptors of the "nonadjacent structures" in a given object. It seems 
that Hosoya [21] was the first to introduce the concept of a nonadjacent structure 
in chemistry. For a graph G, he defined a counting polynomial H(G; x) by 

i r t  

H(G;x) = Z P(G;k) x k ,  (1) 
k = O  

where p(G; k) is the number of ways of selecting k nonadjacent edges in G (i.e. k edges 
in which no two of them are adjacent). The term p(G; k) is called the number of 
k-matching in G. Conveniently, in H(G; x) (and in all other combinatorial poly- 
nomials) p(G; 0) is taken to be unity and m is the maximal value of k. A more general 
expression of such polynomials [6,7] is given by eq. (2), viz. 

max k 
F(G;x) = ~ p®(G;k)x y(k,'O , (2) 

k 
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Table 1 

Some polynomials, associated graphs and graph invariants in chemistry and physics 

Polynomial p Graph invariants set Associated graph ®(G; k) f(k, n) 

1 Acyclic=matching ( -  1) k edges  caterpillar tree, T p(G:k) a n -  2k 
= a ( G ;  x )  

l(a) Counting (ofHosoya) 1 edges  caterpillar tree, T p(G; k) a k 
=H(G;x) 

2 Sextet 
1 hexagons polyhex graph, B r(B; k) b k :57 (J(B; x) 

2(a) Resonance )k 
( 1 hexagons polyhex graph, B r(B; kj b ~ 2M - 2k (B; X) 

3 King 
--- K(P; x) 1 ce l l s  polyomino graph, P K(P; k) c k 

3(a) Rook 1 or kor  
K(Prgx ) ( _ 1)k ce l l s  polyomino graph,P p(Pr;k) d - 2 k  

~Z: /1 

4 Independence 1 vertices Clar graph, A 0( A ; k) e k 
vo( .'~ ; x) 

4(a) Color 
C(G;x) 1 vertices arbitrary graph, G ~(G; k) f k 

aNumber of selections of k independent edges ¢ T (i.e. no two edges are incident). 
bNumber of selections of k nonadjacent but mutually resonant hexagons B. 
CNumber of ways of arranging k non-taking kings on a polyomino graph. 
dNumber of ways of arranging k non-attacking kings. 
eNumber of selections of k independent vertices ~-_- A (no two are adjacent). 
fNumber of colorings in G in which there are k vertices of the same color so that no two of them 

are adjacent. 

where p, ®(G; k) and f ( k ,  n)  are all functions of the particular polynomial.  Table 1 

lists several polynomials of  some use in chemistry,. As an illustration, we consider the 

sextet polynomial [22] o f  a benzenoid system o(B; x).  This important  polynomial  

plays quite a significant role in the chemistry of  benzenoid hydrocarbons [23] and 

was first defined by Hosoya and Yamaguch [22] for the combinatorial enumeration 

of  the number  of  Kekul6 structures of  a benzenoid hydrocarbon.  As can be inferred 

from table 1 and eq. (2), p = 1 and f ( k ,  n) = k for the sextet polynomial.  Further, the 

generating function [24] is given by r(B, k ) x  k, where r(B, k ) i s  called the kth reso- 

nant number  of  the polyhex graph of  the benzenoid system B. It measures the number  

o f  selections of  k mutually resonant and disjoint hexagons in B. The "nonadjacent  

structures" of  table 1 may be visualized from the following diagram: 



160 S. El-Basil, Applications o f  caterpillar trees 

Nonadjacent structures 

Vertices Hexagons Edges ~ Cells 

Care pillar Clar Benzenoid Rook, King 
(Benzenoid) 

tree graph graph board 

The following identities are easy to establish: 

H(T4(2, 1,0, 1);x) : co(A(T4(2, 1,0, 1);x)) 

= o(B(T4(2,1,O,1)ax)) = K(P, . (T4(2.1 ,0 .1) ;x))  

= K(P(T4(2,1,O,1);x)) = 1 + 7 x + 1 3 x  2 + 6 x  3. 

Naturally, when we set x = 1 in the generating function, we arrive at the number of 
Kekul4 structures K(B)  - K, a problem which has been a continual focus of  interest 
[25] despite its early history in chemical combinatorics [26]. Thus, a knowledge o f  
the counting polynomial o f  a given caterpillar leads to other polynomials such as 
sextet, #Tdependence, color, king and rook polynomials (if the latter two boards 
exist). The above treatment, which applies to nonbranched benzenoid hydrocarbons, 
can easily be extended to other systems, as explained below. 

2.3. BRANCHEDSYSTEMS 

By the application of the appropriate recursive relations of the sextet poly- 
nomial [23] one can associate a "pseudo-benzenoid" tree (i.e. a benzenoid tree 
containing a variable x) with virtually any benzenoid hydrocarbon. The principle 
is simple: choose any row of hexagons and divide the set of Kekul~ patterns [23] 
into the set of distinctive cases so that each vertical line in that row is chosen double. 
Caution should be taken against the possibility that the chosen double and the resultant 
fixed double bonds might produce a proper sextet [27] by assigning double bonds 
to the remaining skeleton. The sextet polynomial of the branched benzenoid hydro- 
carbon can be written in terms of polynomials of nonbranched systems. The non- 
branched fragments can then be transformed into caterpillar trees whose counting 
polynomials are identical to the sextet polynomials of the nonbranched polyhex 
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{ L _ ~  u ×(I)(L_I)  

Fig. 2. Recursive generation of  a pseudo-caterpillar tree 
of  a branched benzenoid hydrocarbon. The factor of  X 
accounts for the proper sextet [ 23 ] in the graph to the right. 

graphs. The algorithm is illustrated in fig. 2 for a branched system, where the resulting 
pseudo-benzenoid tree is shown in braces. 

3. Benzenoid trees and computation 

If the matching polynomial and/or the counting polynomial of a benzenoid 
tree is known, all other polynomials of  related graphs in table 1 become immediately 
available. Now the matching and counting polynomials are related to each other [28] 
as follows 

¢x(T;x) = xNH(T, -.x -2 ); (3) 

H(T;x) = i-Nx N/2 c~(T; ix-l~2), (4) 

where N is the number of vertices in the given caterpillar tree. Using elegant operator 
'algebra defined by Hosoya and Ohkami [23,28], it is possible to compute either 
functions (3) and/or (4) for families of caterpillar trees. As an illustration, we calculate 
the matching polynomials of  the family of caterpillars of Pn(3,3, . . . , 3) (where the 
3's are repeated n times). We apply the recursion [29] to the starred edge as follows: 

/~/ ~ ~ . . . _ ~  ; o ~ . . . _ ~  _ ° o ~ _ . . . ~  

n n-1 1 n n -1  1 n -1  1 

T~ K~ To-I 

/2/ , ~ . . . _ ~  _ - o  L ~ . . . _ ~ -  o .  
n n - I  n - 2  1 n n-1 1 

Kn an 

n - I  I 

To-I 
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( 3 )  , ~ _ ~ . . . _ ~  
n n - 1  l 

dn 

0 _ 

n-1  n - 2  1 n - 1  1 

In-1 Tn-1 

{4) * ~  o~....__~ = 

n n - 1  1 

Io 

Defining the step-up operator 0 as 

o 
0 %  - o %_~ 

o 

O T  = T 
n n+ 1 

steps ( 1 ) - ( 4 )  can be re-written in the following form: 

( O +  x 2 )  -nT 1 : x K  - O J  - O Q  : 0 
- n n n - 1  

x T + K  - x J  - O Q  : 0 
n - 1  17 n n -  1 

T + O K  + J  - x ~  = 0 
n - I n n 17- - I  

- + 0 J  + 0 Q  = 0 .  ( x  3 O x )  <,  _ 1 + 0 K n n n - 1 

A nontrivial solution of  (6) requires that 

(O+ x 2) - x  0 0 

x 1 - x  0 

1 0 1 - x  

(x 3 - dx) o 0 O 

= 0  

i.e, 

0 a + ( 3 x  2 - x 4 ) O + x  6 = 0 .  

Application of (8) to T n leads to 

(5) 

(6) 

(7) 

(8) 

"1- X 6 T = 0 . (9) v +~ + (3 x~ - x ~) < +, ,, 
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It is easy to show that,  for the general case Tn(m, m . . . . .  m), the operator  in eq. (8) 
becomes: 

d 2 + ( rex  m - 1  - - x m + l ) O  +X 2m = 0 .  (10) 

Using eq. (10) and the two identities 

o~(Tl(1);x ) = x z - 1 ;  ~(T2(1,  1) ;x)  = x 4 - 3 x  2 + 1, 

followed by repeated application o f eq .  (10) (for m = 1) leads to 

~ (Ts(1 ,  1, 1, 1, 1, 1, 1, 1 ) ;x )  = ~ ( T a ( 1 8 ) ; x )  

= X 1 6  _ 15X 14 + 74X az -- 290X lo + 258X 8 -- 290X 6 + 74X 4 -- 15x 2 + 1. (11) 

1 1 1 1 1 1 1  
-I-8(1 a ) 

" XzXd2s42V 
A(T8 (18)) 

B(T8 (P)) 

P(Ta(la)) Pr (T8(1 a)) 
Fig. 3. Illustration of eq, (13) for a caterpillar tree (i.e. benzenoid tree) and its 
associated graphs for maxk = 8, Simple application of eq, (10) shows that there 
are 290 ways of placing either 3 or 5 non-attacking kings on the chessboard P or Pr, 
The subset ofinvariants leading to x 8 is heavily outlined. 

The graphs of  this polynomial  are shown in fig. 3. Using relations (3) or (4), we can 

write the following identities (see table 1): 

H ( T s ( 1 8 ) ; x )  = a ) ( A ( T a ( l a ) ; x ) )  = o ( B ( T 8 ( l a ) ; x ) )  

= K ( P ( T s ( 1 8 ) ; x ) )  = K(Pr(Ts(18);x) )  

= 1 + 15x + 74x  2 + 290x 3 + 258x 4 + 290x s + 74x6 + 15x7 + x8.  (12) 
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So we know immediately, for instance, that there are 290 ways of placing 3 or 5 non- 
attacking kings on the chessboard shown in fig. 3. It is interesting to observe that 
there is only one way of selecting a subset of nonadjacent structures of maximum 
cardinality (8 in this case). Polynomials of such types as counting, matching, etc. 
of graphs are symmetric in the sense of eq. (13), viz., 

a i = aN_i ,  (13) 

where N is the number of vertices in T (or N -  1 = the number of hexagons in 
B = number of vertices in A, etc.). Benzenoid hydrocarbons for which eq. (13) holds 
(i.e. with a "symmetric" sextet polynomial) are known to have a single sextet Cbrmula 
(i.e. a single Clar representation [30] ). For such types, the number of aromatic sextets 
they contain is very close to the number of sextet-type resonance interactions per 
Kekul~ structure [31]. This last statement is known as Aihara's conjecture [6,31]. 
Aihara's observation is important because it specifies a condition of the benzenoid 
hydrocarbon such that the simple Clar sextet formalism [30] roughly estimates its 
Dewar-type resonance energy [32]. Gutman [33] commented on Aihara's conjecture 
by defining a function F(B)  as follows: 

h 

F(B) = M(B)K(B)  - 2 ~ K ( B - H i ) ,  
i 

(14) 

where M(B) = max k = the maximum cardinality of a set of  mutually resonant but 
disjoint aromatic sextets in the benzenoid graph, and K(B)  is its Kekuld count. The 
summation of the second term is taken over all hexagons H i of B, where h is the 
total number of H i. Gutman specified Aihara's condition that the hydrocarbon be 
represented by a single sextet formula by having 

r (B ;maxk )  = 1. (15) 

Figure 4 shows an example of two hydrocarbons which satisfy Aihara's conjecture, 
another that does not. Furthermore, Gutman restated Aihara's postulate by defining 
F(B) = 0 whenever eq. (15) holds. Benzenoid hydrocarbons for which F(B)vanishes 
define the "best conditions", where nearly all existing resonance-structure theories 
apply, viz. Clar's [30], Dewar's [32] conjugated circuits theory by Randid [34], as 
well as the structure-resonance theory by Herndon [35]. In fact, all such theories 
coincide for benzenoid systems for which eq. (15) applies. 

For benzenoid trees not possessing elements of symmetry or not belonging to 
a given periodic network of trees, the method of Balasubramanian and Randid [36] 
becomes particularly suitable for computation of a(T; x). For example, for the 
caterpillar tree P4 (2,0,2,  1) shown above, we have the following identities: 
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I 2 

3Q 3b 

Fig, 4. Examples of  benzenoid hydrocarbons which 
possess one Clar representation (1 and 2) and a hydro- 
carbon with two Clar representations (as and 3b). Hydro- 
carbons 1 and 2 satisfy Aihara's conjecture [eq, (15)1. 

The quotient tree, Q -'-P4 

i t = X 2 oq = c~ 3 = oe(Tl(2)) = x 3 - 2 x ,  thus a 1 = a 3 

! 

oe 2 = (PI(0)) = x; a 2 = 1 

I 
OL 4 = X 2 -- l ;  C~4 = X .  (16) 

From the adjacency matrix of Q, a ( T ;  x) = a(P4(2,0,2,  1);x)is given by the follow- 

ing detemlinant: 

- ( x  3 - 2 x )  x ~ 0 0 

1 - x  1 0 

0 x z - ( x  3 - 2x) x 2 

0 0 x - ( x  2 - 1) 

(17) 

In the above notation, the primed letter denotes the matching polynomial of a type 
[such as T 1 (2)] after its root vertex has been pruned. The notation is essentially that 

used in ref. [36]. 

. Caterp i l la r  ( b e n z e n o i d )  trees and  the  o rder ing  o f  graphs;  

A re la t ion  w i t h  Y o u n g  d iagrams 

In their work on algebraic characterization of skeletal branching, Gutman and 
Randid [37] used the theorems by Muirhead [38] to order and compare a set of 
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trees (caterpillars and non-caterpillars). In their treatment,  two trees are characterized 
by a sequence ofnonnegative integers { a~, a 2 . . . . .  a k } and { b ~, b 2 . . . . .  b i } represent- 
ing the degrees of  their vertices when listed in descending order. For example, 
P 4 ( 3 , 0 , 4 , 2 )  would be associated with the sequence {6 ,4 ,3 ,2 ,  1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1  }. 
Muirhead's conditions state that T a (whose sequence is {a 1, a 2 . . . . .  ak} ) is greater 

that  T b (whose sequence is {b, ,  b 2 . . . . .  b i } ) if 

a I ~> b 1 

a~ + a 2 >~ b~ + b 2 

a~ + a: + . . .  + a k = b~ + b z + . . .  + b/ . 

Whenever a m + a,7 + . . .  + a o ~ b m + b n + . . .  + b o but a r + a s + . . .  + a t >~ b r + b s 
+ . . . + b t, the two tree graphs are said to be noncomparable .  The latter trees lead to 
bifucation sites in the ordering hierarchy. Using the above criteria, Gutman and 
Randid [37] ordered sets o f  trees for N = 8, 9 and 10. Fur themzore ,  these authors  

[37] m a d e  the  very interest ing observation that their ordering o f  trees can be m a d e  

to overlap wi th  the  R u c h  and  SchOnhofer  [39] ordering ( ) (a  set  o f  Y o u n g  diagrams i f  

(a) in format ion  on the terminal  vertices is suppressed,  and (b) the valency, o f  each 

vertex  is reduced  by  orze. This significant result  leads to a relation b e t w e e n  a Y o u n g  

diagram and a caterpillar tree and hence  b e t w e e n  a Y o u n g  diagram and nearly all 

o ther  graphs and  lattices used in chemis t ry  and physics,  namely ,  Clar graphs, k ing 

p o l y o m i n o  graphs, rook  boards and  p o l y h e x  graphs. As an illustration, the Young 
diagram which corresponds to the set of  graphs of  T = P4(2 ,0 ,2 ,  1) is shown below: 

(3,2,  ,I,)--- 

(4,  3, 2 ,2 ,  I, I, I, I,I,) 

This will be denoted here as Y (3 ,2 ,  1,1). There is a umque Young diagram for every 
caterpillar tree (or any of  its associated graphs), though the reverse is not true, i.e. 
two (or more) caterpillars may be related to the same Young diagram. The following 
examples (from the set N = 8) serve to illustrate this: 

{ P 3 ( 4 , 0 , 1 ) , P 3 ( 1 , 3 , 1 ) }  E Y(4 ,1 ,1 ) ;  

{ P 3 ( 3 , 0 , 2 ) , P 3 ( 3 , 1 , 1 ) , P 3 ( 2 , 2 , 1 ) }  E Y(3 ,2 ,1 ) ;  



S. El-Basil, Applications o f  caterpillar trees 167 

{P4(3,0,0,1),  P4(1,2,0,1)} ~ Y(3,1,1,1);  

{P4(2,0,0,2) ,P4(2,0,  1,1), P4(2, 1,0, 1), P4(1,1,1,1)} E Y(2,2, 1,1); 

{Ps (2 ,0 ,O ,O,1 ) ,Ps (1 ,O , I ,O ,1 ) ,Ps (1 ,1 ,O ,O,  1)} E Y(2,1,1 ,1 ,1) .  

Figure 5 shows the ordering of all Young diagrams containing six boxes. Figure 6 is 
the corresponding order of the nonbranched benzenoid systems which correspond 
to the caterpillar trees. The numbers in parentheses are, respectively, 3'1,3`2,3'3 and 
3'4, where 3'/ is a permutation integral (by Herndon [35]) involving permutation of 
(4i + 2) pi electrons in the benzenoid systems. Twice these numbers enumerate R~, 
R 2 , R a and R 4 , respectively, where R i is a conjugated circuit [34] containing (4i + 2) 
pi electrons. It is obvious that the second number 3'2 (or R 2) is almost constant for 
the same level of ordering of the Young diagram. In fig. 6, the polyhex graphs are 
represented by their LA sequences [5]. Thus, a hexagon may be annellated in two 
ways, viz., 

Linear Angular 

and by convention [5], the terminal hexagons are labeled by L. Thus, B(P4(3,0,4,  2)) 
is denoted by LLLAALLLLALL or L 3 A 2 L 4 AL 2 . In fig. 6, the nonbranched benzenoid 
hydrocarbons containing seven hexagons are ordered. The numbers in parentheses 
are, respectively, 3`1,3'2,3'3 and 3'4, where 3'i is a Hemdon permutation integral [35] 
involving pemmtation of (4i + 2) pi electrons. Naturally, twice these numbers lead to 
the corresponding conjugated circuits [34] RI ,  R z, R 3 and R 4 . 

It is emphasized here that through relating benzenoid trees to other graphs 
in addition to benzenoid hydrocarbons, such as Clar graphs, king polyominos and 
rook boards, they can all be ordered according to schemes by Ruch and Sch6nhofer 
based on Young diagrams [39]. 

5. Benzenoid trees and data reduction 

An important part of an analysis of chemical data is the data-reduction step. 
In the past, this involved mainly curve-fitting procedures. The role of graph theory 
was recognized in the work of Smolenskii [40] and later of Gordon and Kennedy [41]. 
The dualist graphs by Balaban and Harary [42] might also be regarded as a type of 
structure reduction, representing polyhex graphs ofbenzenoid hydrocarbons. Recently, 
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I 
~ {,__) 

Fig. 5. Ruch ordering of all Young diagrams con- 
taining six boxes. Site of bifurcations indicate non- 
comparable diagrams, 

I 
(L~} 
(7,6.5,4) 

{L~AL} 
(17,10,8,6) 

~.{,~A,~} 

{OAL~} < > {dA~ L },{LA L~AL } 
(25,re,H,4) ~ ~ (25jzjo,7) (34,~a,12,a) 

)<.{ L~A~,~ },{ eA LAL},{ L~A L ~AL } 
J ~-~9,21,12,6) (38,22,14,6)(40,23,12,8) 

{LZALAL2}< >{L3A3L} {LA L2A2L} {gB} 

tF{L2A3L2},{L2AaL AL},{L2ALA2L},{LA LA LAL},{gS} 

{ L2A4 L}, { LA2 LA2 L}, { LALA3L}, {~B} 

{,A~A 
(67,3A,20,I0) 

Fig. 6. Ordering of nonbranched benzenoid hydrocarbons which are in one-to-one 
correspondence with the Young diagrams shown in fig. 5. The polyhex graphs are 
denoted by their L - A  sequences [5].  Numbers in parentheses are ('r~, ~'2, Y3, Y4), 
respectively, where ~ri is a Herndon permutation integral [ 35 ] involving permutation 
of (4i + 2) pi electrons. Twice these numbers lead to (R~,  R 2, R 3, R 4 ) ,  the 
sequences of the corresponding conjugation circuits [34]. 
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3.6 
51 

3.4 4 /  
32 

3.C 

2,8 / 

2.6 3 
",,e" 

¢:: 2.4 

2.2 

2.C 

1.8 

1.6 

X (T) 
Fig. 7. Correlation between In K(B), i.e. the natural logarithms 
of the Kekul4 counts of the zigzag polyacenes (1 = phenanthrene 
2 = chrysene, 3 = picene, 4 = fulminene, . . . ) and x(T), the 
connectivity indices of the relevant caterpillar (i.e. benzenoid 
trees). 

this author [43] explored, for the first time, the possibility of using benzenoid trees 
to store and retrieve infomlation on related benzenoid systems (i.e. a benzenoid 
system whose sextet polynomial is identical to the counting polynomial of the tree). 
Several physical and combinatorial properties, including electronic absorption spectra, 
heats of atomizations, number of conjugated circuits, number of self-avoiding walks, 
and number of Sachs graphs are studied, and in all cases excellent correlations are 
found between the natural logarithms of a property of the benzenoid hydrocarbon 
and simple powers of the connectivity index of its tree graph [44]. As an illustration, 
fig. 7 shows a plot of the number of Kekul~ structures in logarithmic units of a homo- 
logous series of the zigzag polyacenes and the connectivity indices of their trees 
x(T) ' s ,  given by 

x ( T )  = ~ ( d  idj) -112 , (19) 

where the summation is taken over all edge types in T, (didj)'s (d i is the degree, i.e. 
valency of  vertex i in T). 
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. O t h e r  avatars  o f  ca terp i l la r  trees.  G e n e r a t i o n  o f  cyc le  indices  

o f  w r e a t h  p r o d u c t  g roups  [45] 

The composit ion [45] of two groups A and B is denoted by A [B] (read: 
A around B) and is known as the "wreath product"  or the "Gruppenkranz". A 
permutation in A [B] is given by 

(C~' i H I , ~ 2 ,  " " " ,H a ) ( X i '  y j )  = (o~xi,Hi Y j )  , (20) 

where a E A, /3 E B and the sequence t31 . . . .  , Ha may not involve necessarily distinct 
elements. The elements (x i, 3~.) arise from the cross product of x = {x l, x 2 . . . . .  xa}  
and Y = {y l ,  Y2 . . . . .  Ye}" Wreath product groups have a number of chemical and 
physical applications, recently discovered by Balasubramanian [46], who revived 
interest in Pdlya's theorem [47]. We show here that caterpillar trees might be used 
as a model to visualize the cyclic structure and the operations of eq. (20); we take, 
as an illustration, the group S 2 [S 2 ]. Then we have : x = {a, b }, Y = { 1,2 } and 

x x  Y : {al ,  a 2 , b l , b 2 } .  

The system might be envisaged as 

1 2 1 2 

G b 

The operations in S 2,s are: (1)(2), (12), (a)(b), (ab). Then the following 2.2 z = 8 
elements exist in S 2 [S 2 ] ,  viz., 

(1) ((a)(b); (1)(2), (1)(2)) 

(2) ((a)(b); (12), (12)) 

(3) ((a)(b); (1)(2), (12)) 

(4) ((a)(b); (12), (1)(2)) 

and four other elements using the operation (ab) instead of (a)(b). 
The element (1) is simply the identity element which corresponds to the 

operation 

I 2 1 2 1 2 l 2 

o b o b 
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Such an element generates six 1-cycles, i.e. s 6. The element (2) operates as follows: 

((a)(b); (12), (12)) (al)  = 

((a)(b), (12), (12)) (a2) = 

((a)(b); (12), (12)) (bl)  = 

((a)(b); (12), (12)) (b2) = 

Hence, this element is given by (a 1 

1 2 1 

V 
G 

2 

x/ 
b 

02) 

(al) 

(b2) 

( b l ) .  

a2)(b 1 b2) and corresponds to 

2 I 2 I 

o b 

The cyclic contribution from this element is s2 2 , i.e. two 2-cycles, 
The third element involves the following operations 

((a)(b); (1)(2), (12)) (al) = (al) 

((a)(b); (1)(2), (12)) (a2) = (a2) 

((a)(b); (1)(2), (12)) (bl)  = (b2) 

((a)(b); (1)(2), (12)) (b2) = (bl)  

which may be represented as (al)(a2)(bl b2), i.e. contributes s12s 2 , i.e. two 1-cycles 
and one 2-cycles to the cyclic structure of S 2 [S 2 ]. The operation of this element can 
be modeled by a caterpillar tree as 

I 2 1 2 

V V  
a b 

- - - - - - - - !~ -  

1 2 2 1 

V V  
e b 

The fourth element permutes the { X x Y } set in the following manner: 

((a)(b); (12), (1)(2)) (al)  = (a2) 

((a)(b); (12), (1)(2)) (a2) = (al) 

((a)(b); (12), (1)(2)) (bl)  = (bl)  

((a)(b); (12), (1)(2)) (b2) = (b2) 
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Hence, this element is represented by (al a2) (b l ) (b2)  and also contributes sl2s 2 . The 
caterpillar model is shown below' 

I 2 1 2 2 1 1 2 

a b a b 

This "caterpillar modeling" of the operations of the composition of two groups 
facilitates understanding of the abstract algebra involved in the definition. A similar 
model was considered by Balasubramanian [48] when he used a parUcle-m-box 
model; thus, 

1 2 2 I 

o b A B 

Actually, eithrer model generates the permutation group of the non-rigid N2H 4 
molecule [48] (i.e. the nitrogen atoms are represented by the root of vertices of 
P2(2,2), while its monovalent vertices represent the hydrogen atoms). The above 
modeling can be extended as shown below: 

m m m m m 

S2 [Sm] S3[Sm] 
m m m 

1 2 n 

so [Sin] 

Extension to the recently defined [49] generalized wreath product is also possible. 
Thus, the NMR group of butane might be modeled by P4(3,2, 2,3), which represents 

$2 [$3,$2 ]. 

7. Conclusions 

Although caterpillar (Benzenoid = Gutman) trees are not widely known in 
chemical literature, their uses span a wide range of applications including data reduction, 
computations, ordering and modeling notations of abstract groups (such as wreath and 
generalized wreath product groups) which are necesaary for NMR spectroscopy and 
counting diastereomers [49]. 
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